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The motion problem of unidirectional glass-fiber-reinforced plastic is formulated under
the assumption that the fibers are under stress = strain only, while the binder is under
shear stress only, The binder and fiber inertia is calculated along a direction parallel

to the fibers. The system of equations in partial derivatives obtained is reduced by
Laplace transformation with respect to time to a system of ordinary differential equations
in which only the fiber displacements occur. As illustration, the effect of a normal stress
wave on a half space is solved. The solution is obtained in the form of an infinite series
provided with an explicit law by which the terms are obtained. Curves are presented for
the distribution of the normal and shearing stresses at different moments of time. The
binderinertia reduces to the appearance of tangential stresses at the fiber— binder boun-
dary,which can explain the tendency towards stratification in constructions made of glass
fiber-reinforced plastic.

1. The assumption [1] that normal stresses exist only in reinforced fibers and that tangential stresses
exist only in the binder in areas parallel to the fibers is often used in studying equilibrium of plates made
of unidirectional glass-fiber-reinforced plastic.

Such a theoretical treatment of the nature of the performance of the components is justified by the
fact that Young's moduli differ in them by 1-2 times, while stretches are roughly the same due to the
cohesion of the fiber and binder. Although the stress state of the components of glass-fiber-reinforced
plastic is in fact more complex, such an approach correctly expresses the concept of the efficient per-
formance of reinforced material: high strength fibers are oriented along the tensile stress lines and the
binder facilitates a more uniform distribution of these loads between the fibers,

The mathematical formulation of static problems leads from this standpoint to a system of ordinary
differential equations for the displacements of reinforced fibers, while elasticity theory would lead to a
more complex problem formulated in terms of equations in partial derivatives with coupling conditions on
each fiber— binder surface.

Such an approach is generalized below to the case of dynamics. Here, we will preserve the assump-
tions formulated regarding the nature of the performance of the components and take into account inertial
forces in both the binder and in the fibers. This leads to a system of partial differential equations for the
displacement. A system of differential equations is obtained following Laplace transformation with respect
to time and the elimination of the binder displacements for the transformed fiber displacements, almost
identical to the static case.

The chief qualitative effect clarified by our formulation of the problem is that the binder inertia
induces an increase in the shearing stresses at the component interfaces.

Suppose a given plate consists of M fibers with Young's modulus E and density py, the fibers numbered
with integers j from R + 1 to R + M, The fibers alternate with binder layers (shear modulus G, density py)
of width H. We denote by h the width of the fibers in the place of the plate. Thus we have for the reinforce-
ment coefficient ¥ = h (h + H),the velocity of the shear waves in the fibers c¢1 = (E/p 1) , the velocity of the
shear waves inthe binder Cy = (Gr/pg)1 2 The y axis is parallel, and the x axis perpendmular, to the fibers,
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Binder displacement along the y axis will be noted by v; (¢, y, t). This notation indicates a given
binder point lies between the j-th and (j + 1)-th fibers at a chs’rance £ from the j4th fiber (0 = ¢ = H);yis
the coordinate along the fiber, and t is time. Fiber displacement will be denoted by uj(y, t). We assume
that shearing stresses in the binder Tj (E y, t} and normal stresses in the fiber cr]( , 1) are proportional
to the corresponding deformations,

6v; €, 9, 9) 3u-(y, f)
TJ'(E: Y, t) =G "_]_ag—'—“s G]‘(y,t):‘: E 5}/ (101)

Then the motion equation of the binder changes into the wave equation
Cy 262vi /6&2 —_ 320i /82 =0 (1.2)

The binder — fiber coupling conditions yield the boﬁndary conditions for Eq. (1.2):
2;(0, ¥, 1) = uj (g, 8, v; (H, ¥, 8) = upq (4, 1) 1.3)

Let us write the fiber motionequations, assuming that the outermost fibers (j+ R+ 1, j =R + M) are
free of external loads, so that

h&o_,-/ay "|— [(1 — 6;;,34.1\,1) Tj (0, Y, t) —_ (1 — 6,',R+1) Tjq (H, I’B t)] = p1h02u,- / 0t2
where 8ik is the Kronecker symbol. After substituting o3, 75, and Tj-1 from Eq. (1.1) we obtain
) AL

2
au]

a 1y s E 1.4
w7t - & (1.4)

8;, rea) Vi lemo — (1 — 8, Ra) U o=l = —5 5" =

The system of equations (1.2)-(1.4) determines, in conjunction with the corresponding initial and
boundary conditions, the motion of glass-fiber-reinforced plastic.

We now Laplace transform Egs. (1.2)-(1.4) with respect to time, assuming for the sake of simplicity
that the initial conditions are zero ([2] Chap. VI). The transformed variables will be marked with the
superscript L and the transformation parameter will be denoted by p. Following this tranformation Eq.
(1.2) changes into an ordinary differential equation and, after solving it under the boundary conditions
(1.3) (Laplace transformed), we obtain

o (& y, p) = sh™IA [ufsh (A — AL/ H) + uz® sh A/ H)l {1.5)
A=pH/c,

Using Eqgs. (1.4) and (1.5) we arrive at the system of ordinary differential equations

02d?uryL / dy® + p? [— (@ — ch A) up® + uptl =0

o’d?ul/ dy? + B2 (il — auf+ upgt) = 0,75 R + 1L,R-+M (1.6)
0'dug, i / dy? + P2 [upins — (@ — chd) ugsy] =0 .
B = (G/EW, o= (Hhshh/Nk, a=pe’/p, + 2ch A

Fiber displacements but not binder displacements occur in Eq, (1.6), Under.nonzero initial conditions
a known right side would appear in Eq. (1.6). The shearing stresses in the binder are determined by means

of Egs. (1.5) and (1.1) once Uy has been found.

Let us consider the limiting cases. Suppose the displacements approach a given limit as t tends to
infinity. Then, using a well-known theorem of the operational calculus ({2}, section 83), we have
Iim u, =1im pu,rt
-0 =0
Multiplying Eqgs. (1.5) and (1.6) by t and passing to the limit as p approaches zero, we obtain the
system of equations that describes the equilibrium state. It will differ from Eqgs. (1.6) by the absence of
L superscripts for the displacementsuj and by the fact that A =0, & = (Hh) 2 and that @ = 2, We obtain
from Eq. (1.5) following this passage to a limit that the displacement equilibrium of the binder are linear
functions of £,

We may arrive atthe same results by letting the transmission rates ci and c; of the interaction tend
toward infinity. By passing to the limit, the coefficients of the system (1.6) tend to the same values as
when p approaches zero. Consequently, the fundamental system of solutions (1.6) will be the same as in
statics. Thus, the dependence of u; on p results by definition from the boundary conditions on the constants
occurring in the general solution of the system. That is, glass-fiber-reinforced plastic instantaneously
reacts to a variation in the boundary conditions, acquiring an equilibrium configuration corresponding to
the boundary conditions at the given moment of time. If, in particular, the boundary displacements or
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deformations are constant when t > 0, their Laplace transforms (transformation parameter p‘i) following
the transformation of the preimage u;j will turn out to be independent of t ([2], sec. 79, Eq. (8) when 7T = ().

Let us consider a second passage to a limit, We let h and H approach zero and the number M of
fibers tend to infinity, so that the reinforcement coefficient ¥ = h/(h + H) and the x = j(h + H) remain con-
stant, Then « approaches 2 and the expression uj_iL"' @uj~ *uj+qinthe second and third equations of
Eq. (1.6) becomes a proportional difference analogue of the second derivative with respect to x and u™.

Thus we pass to a homogeneous continuous medium, the equation for which in Laplace transforms
is obtained from Eq. (1.6):
ozl 32 o2l V4

T A= e = Y

An equation in preimages corresponds to this equation, that is
LN A W3

dy? p(1—¢) 622 ¢ o2
which little differs from a wave equation. The binder inertia following this passage to a limit does not
play any role. Consequently, a description of glass-fiber-reinforced plastic by means of Eq. (1.7) is.un-

acceptable whenever the dynamic interaction between the fiber and binder is of interest.

(1.7)

2. Let us consider the half-spacey = 0, =< j <=, In this case, only the second and third equations
remain in Egs. (1.6): multiplying the j-th equation by exp(isj), where i is imaginary unity and s is a real
number and summing over j, we arrive at the ordinary equation

*d?ulF [ dy® + B* (—a + 2 cos 5) uLF =0
for the Fourier series -
Wl (y,p,8) = 20wt (y, p)exp(is))

J=—00
Since ul'F (v, ps 8) = 0, we find
uLF (y, p, s) = ¢ (p, s) exp (— _E)y_ Va—2cos s)
The unknown function c(p, s) is determined from the boundary conditions when y = 0. We find by

expressing the coefficients of the Fourier series in terms of its sum, the Laplace transform of the dis-
placements

ujL (.’/’ p) = (23‘5)_1 S ul¥ (y1 P, S) exp (— isj) ds

Suppose suddenly applied constant normal stress Q¥(¥ is the reinforcement coefficient) acts on the
half space.

Under the model we have accepted (the binder does not absorb normal leads) the boundary conditions
are given by

du, Q 0, t<0
20 n=280,  %0={, /50

Following Lapiace transformation we have

ou, outf 2nQ
0D = o T O =5

f} 8y (s — 2mk)
Jis

p==—00

where 8 is the Dirac delta function ([3], p. 47, Eq. 2)),

Lm0 S s o
C(p,S)—- va kgw 61(3 J'l:)
— —2
u]L (y’ p) = PGE’)% exp( 'L:/yu‘./_-_uz /m)
dul
GJL(y,p)-;E—dz’,—:——-%exp(— Cyf)

3 2Ger?
r=) i, o=
We find the shearing stresses at the fiber = binder boundary € = 0) using Egs. (1.1) and (1,5):

1,20, y,p) = — LY -%—exp (—- Gylr )

B2car
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Since there is no dependence in this problem on j, we omit this subscript in subsequent calculations.

To obtain the preimages, we decompose L and oL in Taylor series in powers 4 = exp(~A) in the
neighborhood of the point 4 = 0, The terms of these series correspond to the shear waves due to the most
distant fibers, based on the lag theorem of the operational calculus ([4], p. 69). Inparticular,the free term
{x» = =) indicates the solution of the problem for an isolated fiber embedded in a half-space made of the
binder or the solution of our problem for those moments of time when the shear wave can reach the
neighboring fibers (0 =t < H),

In this case, differentiation with respect to ¥ or a calculation of the coefficients of the Taylor series
can be replaced by differentiation with respect tc the parameter €, in which p does not occur.

In fact, introducing a new variable A = € tanh(\/2) we have
{3 ATk
ale (th HE
o™ ' ikt 2.1)
k=
1) AN o*
Ce' vt o™ o

k=1 l=0
The second equality expresses the rule for finding the n-th derivatives of a composite function ({5],
Eq. (0.430)]. Using the first equality and recalling that the derivatives must be found at the point ¥ = 0,
and also that
v—8(1~u)/(1+u)

k—1 k—1

Z (— DG Tl = T g = o 2 (— 1)} Cyle™* [y =
I= =
— k__a__-(i:u—_ )k| —_— K(__ n—rk _ 1 x
= T ! pzo—( 28y (— )" * ke (n — 1)! C,;
we find the n-th term of the desired Taylor series for the normal stress
_1 n 2 6
) ¥ Z k(j)i)l ﬂk s> (}"—0) 2.2)

Since the parameter € is independent of p, it will be sufficient to find the preimage for the free term,
while all the remaining preimages correspondington = 1 will be obtained from it by differentiation with
respect to €, a shift with respect to time by nH/cy in the expression obtained and substitution in Eq. 2 2y,
We then obtam the normal stress using the transformation equation {6] as a function of time and coordinate;

. —_—
6 (Y, t) Yy 8y & exp (— ea/2) It (V &% [— y¥ei®) da
0 — 8, (t — T) [exp ( Do ) + 2a y$c Vo —ye® ] N

oo n
ey (— 1" nH oy A ( e [, nH ( e l/———yz
201 n 60(t-72—6—1>'§0n =D ger1 | &P — 3\l I\~ tnz-Tlr) ’

n=1

where Iy and I; are Bessel functions of an imaginary argument.

Similar calculations yield the shearing stress at the fiber bonudary

) e A R

S 1) < eof & et,, 3 (2.4)
+3 o tn— ] 2 —or O 5 [SBXP(—T>’°(T be— o)

n=1

At any time t a finite number of terms will occur in Eqgs. (2.3) and (2.4) so that the Heaviside function
vanishes for sufficiently large n. The physical meaning here is that a fiber interacts always with a finite
number of other fibers, from which the shear wave succeeds in arriving at a given moment in time,.

Equations (2.3) and (2.4) are not suitable for calculations on a computer as they involve the differ-
entiation operation, We can eliminate differentiation by using recursion formulas for the Bessel functions.
The result of such a transformation is as follows: .

T — o " n
E—("Q’—T-)-zéo(T—n)[exp(—nH—ﬂ g exp (— o) I (Vo — 1) da ]—Tl Z (__,;1)_ 60(T—nx-—n)2qk_1(T~—nx,n)

7 —n® n=} k=1
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where 1 = €y/2¢y - [92012)7 fesh is a dimensionless coordinate, T = €t/2 = tB%¢;%/csh is dimensionless time,
" =EH/2¢y = 52c1 H/cs*h , is dimensionless time for the shear wave path between the fibers, and

¢ (T, = exp(— D I (Y T* — 1)

mo (T, m) = exp(—T) L, (V T* — )
'2(n—k3J-1 _g
ax (T, m) =% (—Tgpa + VTP myq) -

— kA1 —_ ok
(T, ) = 25T (VP = g — Imie) +-S2 ¢ 3

=0

i}

—2) an

Figures 1 and 2 depict the stress distribution with respect to coordinate at different moments of
time (the calculation was conducted with» = 1), If binder inertia is not taken into account, it turns out that
T =0 and o =Q0dy(cit-y). Curves 1-4 correspond to T = 1,0, 1.4, 1,8, and 2.0 in Fig, 1 and curves 1-6 in
Fig. 2 correspond to T = 0.5, 0.75, 1.0, 1.2, 1.6, and 2,0, respectively.

The qualitative effect demonstrated here, namely the appearance of shearing stresses in areas per-
pendicular to the front of a plane wave, is related to the binder inertia and not to the factthat the load at y =
0 is distributed nonuniformly (concentrated only on the fibers). If we take into account the normal rigidity
of the binder and load the half-plane boundary uniformly, we will again arrive at the same problem with
the only difference that the boundary conditions will have to hold on a line shifted inside the half-space by
a value on the order of cih/cs, due to the lesser velocity of longitudinal waves in the binder than in the
fibers over a period of time roughly equal to the shear wave path time between the fibers.

LITERATURE CITED

1, J. O, Outwater; Jr., "The mechanics of plastics reinforcement in tension," Mod. Plastics, 33, No. 7,
156 (1956),

2. M. A, Lavrent'ev and B, V, Shabam, Methods of the Theory of Functions of a Complex Variable (in
Russian], Nauka, Moscow (1973).

3. I. M. Gel'fand and G. E. Shilov, Generalized Functions and Functional Operations (in Russian], Fiz-
matgiz, Moscow (1958),

550



L. I, Slepyan, Nonstationary Elastic Waves [in Russian], Sudostroenie, Leningrad (1972),

I. S, Gradshtein and I, M, Ryzhik, Tables of Integrals, Sums, Series, and Products {in Russian},
Fizmatgiz, Moscow (1963),

V. A, Ditkin and A, P, Prudnikov, Handbook of Operational Calculus {in Russian], Vysshaya Shkola,
Moscow (1965).

551



